PENGARUH PEMASANGAN TIGA TIPE SENSOR PLAT ORIFICE PADA PENGUKURAN ALIRAN
Abstract
Perhitungan laju aliran fluida dengan pembacaan tekanan yang hilang pada pipa yang direstriksi merupakan teknik yang paling umum digunakan dalam pengukuran aliran dalam industri. Plat orifice merupakan salah satu sensor yang dapat digunakan untuk membuat beda tekanan antara sisi upstream dan downstream. Pengaruh pengukuran aliran dengan menggunakan tiga tipe sensor plat orifice bisa dicapai bila input yang di berikan pada fluida yang berupa flow meningkat dan berdampak pada nilai akhir dari sensor orifice tersebut yang berupa pressure loss. Dari penggunaan ketiga tipe sensor orifice konsentrik, eksentrik dan segmental, diperoleh sensor yang paling tepat di gunakan pada fluida yang berupa air adalah sensor plat orifice dengan tipe konsentrik, dengan menghasilkan pressure loss yang lebih kecil dan di tandai oleh koefisien relativ yang cukup baik. Dari hasil percobaan penggunaan sensor plat orifice dangan tipe konsentrik menghasilkan output pressure loss berkisar 192.6 (Psi) – 119.6 (Psi).
Keywords
Full Text:
PDFReferences
A.B., O., & Ovinis, M. (2020). A review of in-situ optical flow measurement techniques in the Deepwater Horizon oil spill. Measurement, 153, 107396. https://doi.org/10.1016/j.measurement.2019.107396
Adamkowski, A., Janicki, W., Krzemianowski, Z., & Lewandowski, M. (2019). Flow rate measurements in hydropower plants using the pressure-time method – Experiences and improvements. Flow Measurement and Instrumentation, 68(June 2018), 101584. https://doi.org/10.1016/j.flowmeasinst.2019.101584
Alawee, W. H., Almolhem, Y. A., Yusuf, B., Mohammad, T. A., & Dhahad, H. A. (2020). Variation of Coefficient of Friction and Friction Head Losses Along a Pipe with Multiple Outlets. Water, 12(3), 844. https://doi.org/10.3390/w12030844
Almusallam, A. S., Daffallah, I. E., & Benyahia, L. (2020). Modeling the Deformation of Shear Thinning Droplets Suspended in a Newtonian Fluid. Applied Rheology, 30(1), 151–165. https://doi.org/10.1515/arh-2020-0113
Bernoulli’s principle: Basic formula for pump head calculation - Chemical Engineering Reviewer. (n.d.). Retrieved October 31, 2023, from https://chemical-engineering-review.com/en/bernoullis-principle/
Bonzanini, A., Picchi, D., Ferrari, M., & Poesio, P. (2019). Velocity profiles description and shape factors inclusion in a hyperbolic, one-dimensional, transient two-fluid model for stratified and slug flow simulations in pipes. Petroleum, 5(2), 191–198. https://doi.org/10.1016/j.petlm.2018.03.005
Brightmore, A. W. (1907). Loss Of Pressure In Water Flowing Through Straight And Curved Pipes. Minutes of the Proceedings of the Institution of Civil Engineers, 169(1907), 315–336. https://doi.org/10.1680/imotp.1907.17203
Brkić, D., & Praks, P. (2018). Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function. Mathematics, 7(1), 34. https://doi.org/10.3390/math7010034
Campos, S. R. V., Baliño, J. L., Slobodcicov, I., Filho, D. F., & Paz, E. F. (2014). Orifice plate meter field performance: Formulation and validation in multiphase flow conditions. Experimental Thermal and Fluid Science, 58, 93–104. https://doi.org/10.1016/j.expthermflusci.2014.06.018
Cantwell, B. J. (2019). A universal velocity profile for smooth wall pipe flow. Journal of Fluid Mechanics, 878, 834–874. https://doi.org/10.1017/jfm.2019.669
Choo, Y.-M., Kim, J.-G., & Park, S.-H. (2021). A Study on the Friction Factor and Reynolds Number Relationship for Flow in Smooth and Rough Channels. Water, 13(12), 1714. https://doi.org/10.3390/w13121714
Ebrahimi, B., He, G., Tang, Y., Franchek, M., Liu, D., Pickett, J., Springett, F., & Franklin, D. (2017). Characterization of high-pressure cavitating flow through a thick orifice plate in a pipe of constant cross section. International Journal of Thermal Sciences, 114, 229–240. https://doi.org/10.1016/j.ijthermalsci.2017.01.001
Ettouney, R. S., & El-Rifai, M. A. (2011). Sensitivity of orifice meter gas flow computations. Journal of Petroleum Science and Engineering, 80(1), 102–106. https://doi.org/10.1016/j.petrol.2011.11.005
Foucault, E., & Szeger, P. (2019). Unsteady flowmeter. Flow Measurement and Instrumentation, 69(April), 101607. https://doi.org/10.1016/j.flowmeasinst.2019.101607
Gao, J., & Wu, F. (2019). Investigation of flow through the two-stage orifice. Engineering Applications of Computational Fluid Mechanics, 13(1), 117–127. https://doi.org/10.1080/19942060.2018.1561517
Gentle, R., Edwards, P., & Bolton, B. (2001). Fluid mechanics. In R. Gentle, P. Edwards, & B. B. T.-M. E. S. Bolton (Eds.), Mechanical Engineering Systems (pp. 112–168). Elsevier. https://doi.org/10.1016/B978-075065213-1/50003-9
Haktanir, T., & Ardiçlioǧlu, M. (2004). Numerical modeling of Darcy-Weisbach friction factor and branching pipes problem. Advances in Engineering Software, 35(12), 773–779. https://doi.org/10.1016/j.advengsoft.2004.07.005
Jaguaribe, E. F. (2022). The Flat Plate Boundary Layer Equation under Blasius Restrictions with a Unique Solution. Mathematical Problems in Engineering, 2022(c), 1–9. https://doi.org/10.1155/2022/9032974
Kiss, K., & Patziger, M. (2018). On the accuracy of three dimensional flow measurements at low velocity ranges in municipal wastewater treatment reactors. Flow Measurement and Instrumentation, 64(November 2017), 39–53. https://doi.org/10.1016/j.flowmeasinst.2018.10.002
LaNasa, P. J., & Upp, E. L. (2014). Fluid flow measurement: A practical guide to accurate flow measurement. Butterworth-Heinemann.
Malavasi, S., Messa, G., Fratino, U., & Pagano, A. (2012). On the pressure losses through perforated plates. Flow Measurement and Instrumentation, 28, 57–66. https://doi.org/10.1016/j.flowmeasinst.2012.07.006
Medeiros, A. K. de A., Lima, J. F. de, Medeiros, G. G. de, Silva Junior, N. F. da, Felipe, R. N. B., & Felipe, R. C. T. dos S. (2006). Parameters for dimensional inspection of orifice plates and roughness of the straight stretches of the tubing . In Brazilian Archives of Biology and Technology (Vol. 49, pp. 1–8). scielo .
Melzer, S., Munsch, P., Förster, J., Friderich, J., & Skoda, R. (2020). A system for time-fluctuating flow rate measurements in a single-blade pump circuit. Flow Measurement and Instrumentation, 71(October 2019). https://doi.org/10.1016/j.flowmeasinst.2019.101675
Mika, Ł., & Sołek, M. (2019). Energy losses in contractions for the ice slurry considered as the Bingham fluid. IOP Conference Series: Earth and Environmental Science, 214(1), 012057. https://doi.org/10.1088/1755-1315/214/1/012057
Orea, D., Vaghetto, R., Nguyen, T., & Hassan, Y. (2020). Experimental measurements of flow mixing in cold leg of a pressurized water reactor. Annals of Nuclear Energy, 140, 107137. https://doi.org/10.1016/j.anucene.2019.107137
Reader-Harris, M., Barton, N., & Hodges, D. (2012). The effect of contaminated orifice plates on the discharge coefficient. Flow Measurement and Instrumentation, 25, 2–7. https://doi.org/10.1016/j.flowmeasinst.2011.11.003
Santhosh, K. V., & Roy, B. K. (2012a). An Intelligent Flow Measurement Technique using Ultrasonic Flow Meter with Optimized Neural Network. International Journal of Control and Automation, 5(4), 185–195. https://doi.org/10.7763/IJAPM.2012.V2.78
Santhosh, K. V., & Roy, B. K. (2012b). An intelligent flow measuring technique using venturi. Lecture Notes in Engineering and Computer Science, 2196, 902–907.
Su, M., Jiao, X., Li, J., Wu, S., & Wu, T. (2021). Accuracy and reliability analysis of pipe irrigation metering device for sandy water source. Water (Switzerland), 13(7), 1–14. https://doi.org/10.3390/w13070947
Tanaka, H., Shiomi, Y., & Ma, K.-F. (2017). Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones. Earth, Planets and Space, 69(1), 151. https://doi.org/10.1186/s40623-017-0737-9
Tardi, G., Massaroni, C., Saccomandi, P., & Schena, E. (2015). Experimental Assessment of a Variable Orifice Flowmeter for Respiratory Monitoring. Journal of Sensors, 2015, 1–7. https://doi.org/10.1155/2015/752540
Tharakan, T. J., & Rafeeque, T. A. (2016). The role of backpressure on discharge coefficient of sharp edged injection orifices. Aerospace Science and Technology, 49, 269–275. https://doi.org/10.1016/j.ast.2015.12.014
Tod, S. R. (2002). The effects of stress and fluid pressure on the anisotropy of interconnected cracks. Geophysical Journal International, 149(1), 149–156. https://doi.org/10.1046/j.1365-246X.2002.01626.x
Valdés, J. R., Rodríguez, J. M., Saumell, J., & Pütz, T. (2014). A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves. Energy Conversion and Management, 88, 598–611. https://doi.org/10.1016/j.enconman.2014.08.057
Vemulapalli, S., & Venkata, S. K. (2022). Parametric analysis of orifice plates on measurement of flow: A review. Ain Shams Engineering Journal, 13(3), 101639. https://doi.org/10.1016/j.asej.2021.11.008
Warnecke, H., Kroner, C., Schumann, D., & Tränckner, J. (2021). Generation, validation and application of dynamic load profiles in flow measurement using cavitating Herschel–Venturi nozzles. Flow Measurement and Instrumentation, 82(May), 102068. https://doi.org/10.1016/j.flowmeasinst.2021.102068
Wong, T. S. W. (1996). Influence of upstream inflow on wave celerity and time to equilibrium on an overland plane. Hydrological Sciences Journal, 41(2), 195–205. https://doi.org/10.1080/02626669609491492
Wu, H., Xu, Y., Wang, J., Zhang, T., & Wang, H. (2019). Study on the similarity of wet gas pressure drop in long-throat Venturi. Flow Measurement and Instrumentation, 68(May), 101580. https://doi.org/10.1016/j.flowmeasinst.2019.101580
Xu, X., Fang, L., Li, A., Wang, Z., & Li, S. (2021). Numerical Analysis of the energy loss mechanism in cavitation flow of a control valve. International Journal of Heat and Mass Transfer, 174, 121331. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121331
DOI: http://dx.doi.org/10.31153/instrumentasi.v48i1.624
Copyright (c) 2024 Instrumentasi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.