DESIGN AND BUILD THE SLIDING DRUM COLLECTOR WITH RPM COUNTER ARDUINO FOR NANOFIBER FABRICATION

Panji Setyo Nugroho, Dewa Pascal Ariyanto, Della Astri Widayani, Luluk Arifatul Hikamiah, Jasmine Cupid Amaratirta, Dewanto Harjunowibowo, Yulianto Agung Rezeki

Abstract


The rotational speed of the drum collector is an important parameter to determine the morphology of the nanofiber. Currently, many researchers are modifying single nozzle into multi-nozzle to obtain a wide range of materials. However, it requires more powerful syringe-pumps or increasing their number, leading to escalated cost. In addressing this issue, the sliding drum collector with an RPM counter is proposed as a solution. This apparatus uses a DC motor 775 and a stepper motor Nema17 as the driving device and an IR-sensor as the RPM counter. The RPM counter on this apparatus has also been calibrated and obtained an accuracy value of 97.87% and a precision value of 96.45%. The performance of the sliding drum collector has been validated. The sliding drum collectors have been proven to produce wider material with an area of (389 ± 8) cm2, (66 ± 18) cm2 larger than an ordinary drum collector.


Keywords


drum collector; electrospinning; RPM counter Arduino; wider area of nanofiber

Full Text:

PDF

References


Al-Okaidy, H. S., & Waisi, B. I. (2023). The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane. Baghdad Science Journal. https://doi.org/10.21123/bsj.2023.7309

Bangdiwala, S. I. (2018). Regression: simple linear. International Journal of Injury Control and Safety Promotion, 25(1), 113–115. https://doi.org/10.1080/17457300.2018.1426702

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623

Gao, Y., Ierapetritou, M. G., & Muzzio, F. J. (2013). Determination of the confidence interval of the relative standard deviation using convolution. Journal of Pharmaceutical Innovation, 8(2), 72–82. https://doi.org/10.1007/s12247-012-9144-8

Ibrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers : Production parameters and potential applications. Polymer Testing, 90(May), 106647. https://doi.org/10.1016/j.polymertesting.2020.106647

Liyanage, A. A. H., Biswas, P. K., Dalir, H., & Agarwal, M. (2023). Engineering uniformity in mass production of MWCNTs/epoxy nanofibers using a lateral belt-driven multi-nozzle electrospinning technique to enhance the mechanical properties of CFRPs. Polymer Testing, 118(September 2022), 107883. https://doi.org/10.1016/j.polymertesting.2022.107883

Nuryantini, A. Y., Munir, M. M., Ekaputra, M. P., Suciati, T., & Khairurrijal. (2014). Electrospinning of poly(vinyl alcohol)/chitosan via multi-nozzle spinneret and drum collector. Advanced Materials Research, 896, 41–44. https://doi.org/10.4028/www.scientific.net/AMR.896.41

Perea Martins, J. E. M. (2019). Introducing the concepts of measurement accuracy and precision in the classroom. Physics Education, 54(5). https://doi.org/10.1088/1361-6552/ab3143

Putra, M. E., Gizi, J., Masyarakat, F. K., Andalas, U., Studi, P., Mesin, T., & Andalas, U. D. (2022). Akurasi Dan Presisi Alat Ukur Tinggi Badan Digital Untuk Penilaian Status Gizi. Jurnal Endurance, 6(3), 616–621. https://doi.org/10.22216/jen.v6i3.580

Rezeki, Y. A. (2020). Pabrikasi Partikel Nano Ekstrak Kulit Manggis sebagai Antioksidan Menggunakan Teknik Electrospray. Institut Teknologi Bandung.

Rosman, N., Wan Salleh, W. N., Jamalludin, M. R., Adam, M. R., Ismail, N. H., Jaafar, J., Harun, Z., & Ismail, A. F. (2020). Electrospinning parameters evaluation of PVDF-ZnO/Ag2CO3/Ag2O composite nanofiber affect on porosity by using response surface methodology. Materials Today: Proceedings, 46(xxxx), 1824–1830. https://doi.org/10.1016/j.matpr.2020.11.847

Sanchaniya, J. V., Kanukuntla, S. P., Simon, S., & Gerina-Ancane, A. (2022). Analysis of Mechanical Properties of Composite Nanofibers Constructed on Rotating Drum and Collector Plate. Engineering for Rural Development, 21, 737–744. https://doi.org/10.22616/ERDev.2022.21.TF227

Sandri, G., Rossi, S., Bonferoni, M. C., Caramella, C., & Ferrari, F. (2020). Electrospinning Technologies in Wound Dressing Applications. Therapeutic Dressings and Wound Healing Applications, 315–336. https://doi.org/10.1002/9781119433316.ch14

Shin, D., Kim, J., & Chang, J. (2018). Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber. Journal of Manufacturing Processes, 36(June), 231–237. https://doi.org/10.1016/j.jmapro.2018.10.011

Tan, S. M., Teoh, X. Y., Le Hwang, J., Khong, Z. P., Sejare, R., Almashhadani, A. Q., Assi, R. A., & Chan, S. Y. (2022). Electrospinning and its potential in fabricating pharmaceutical dosage form. Journal of Drug Delivery Science and Technology, 76(August), 103761. https://doi.org/10.1016/j.jddst.2022.103761

Yao, J., Bastiaansen, C. W. M., & Peijs, T. (2014). High strength and high modulus electrospun nanofibers. Fibers, 2(2), 158–187. https://doi.org/10.3390/fib2020158

Yousefzadeh, M. (2017). Modeling and simulation of the electrospinning process. In Electrospun Nanofibers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100907-9.00012-X




DOI: http://dx.doi.org/10.31153/instrumentasi.v48i1.638

Copyright (c) 2024 Instrumentasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright &copy 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.