DEVELOPMENT OF LOW-COST CLINICAL BLOOD PRESSURE DATA RECORDING UNIT WITH HIGH SAMPLING RATE
Abstract
This paper discusses the improvement of blood pressure recording unit in sampling rate and cost efficiency from the previous recorder using Arduino and PLX-DAQ. In order to increase the sampling rate, the NI-myDAQ device and LabVIEW program were used. The recording unit was able to record the blood pressure samples with the sampling rate 200000 samples/second which complies with the ISO/TS 81060-5 : 2019 with relatively low-cost. However, further development in recording Korotkoff sounds, determining systolic, diastolic, and mean arterial blood pressures are required.
Keywords: blood pressure, recording unit, ISO/TS 81060-5, sampling rate, low-cost
Keywords
References
Celler, B. G., Argha, A., Le, P. N., & Ambikairajah, E. (2018). Novel methods of testing and calibration of oscillometric blood pressure monitors. PLOS ONE, 13(8), e0201123. https://doi.org/10.1371/journal.pone.0201123
Darwongso, A., Ughi, F., & Hidayat, S. W. (2019). Simulator Tekanan Darah: Minimalisasi Pengaruh Laju Inflasi dan Deflasi Terhadap Simulasi Osilasi. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 7(1), 165. https://doi.org/10.26760/elkomika.v7i1.165
Dewanto, G. A., Ughi, F., & Abdillah, A. (2016). Development of Low Cost Blood Pressure Simulator for Automatic Non-Invasive Blood Pressure Monitor. Swiss German University.
Doh, I., Lim, H. K., & Ahn, B. (2015). Calibration of oscillometric non-invasive devices for monitoring blood pressure. Metrologia, 52(2), 291–296. https://doi.org/10.1088/0026-1394/52/2/291
Han Wook Song, SungJun Lee, Park, Y. K., In Mook Choi, & Sam Yong Woo. (2008). The development of a blood pressure simulator in KRISS. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3285–3288. https://doi.org/10.1109/IEMBS.2008.4649906
Júnior, L. S., Júnior, F. I. da S., & Lamary, P. (2015). A theoretical and experimental study of the deformation of the piston-cylinder unit of a metrological pressure balance. Journal of Physics: Conference Series, 648, 012020. https://doi.org/10.1088/1742-6596/648/1/012020
Muthia Septanti, E., Joko, T., & Nurjazuli, N. (2022). Implementasi Program Penarikan Alat Kesehatan Bermerkuri Di Puskesmas Kecamatan Sukmajaya. JURNAL KESEHATAN LINGKUNGAN: Jurnal Dan Aplikasi Teknik Kesehatan Lingkungan, 19(2), 261–268. https://doi.org/10.31964/jkl.v19i2.492
Nitzan, M., Slotki, I., & Shavit, L. (2017). More accurate systolic blood pressure measurement is required for improved hypertension management: a perspective. Medical Devices: Evidence and Research, Volume 10, 157–163. https://doi.org/10.2147/MDER.S141599
Park, S.-H., & Park, Y.-S. (2019). Can an automatic oscillometric device replace a mercury sphygmomanometer on blood pressure measurement? a systematic review and meta-analysis. Blood Pressure Monitoring, 24(6), 265–276. https://doi.org/10.1097/MBP.0000000000000412
PTB. (2014). Guideline DKD-R 6-1 Calibration of Pressure Gauges. Page 1-51. Accesed on 5 February 2020 from https://www.ptb.de/cms/fileadmin/internet/dienstleistungen/dkd/archiv/Publications/Guidelines/DKD-R_6-1_2016_englisch.pdf
Riedel, W., Mieke, S., Seemann, R., & Ittermann, B. (2011). A simulator for oscillometric blood-pressure signals to test automated noninvasive sphygmomanometers. Review of Scientific Instruments, 82(2), 024303. https://doi.org/10.1063/1.3549803
Santoso, N. A., & Ughi, F. (2017). Control System for DC Motor Based Micro Air Pump to Simulate Oscillograph of Blood Pressure. 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 1–5. https://doi.org/10.1109/ICICI-BME.2017.8537768
Santoso, N. A., Ughi, F., & Abdillah, A. (2017). Optimization of Low Cost Blood Pressure Simulator For Automatic Noninvasive Blood Pressure Monitor. Swiss German University.
Sreenivas Rao, M. V., & Shivakumar, M. (2020). PLX-DAQ-Based Wireless Battery Monitoring System for Obstacle Avoidance Robot (pp. 133–140). https://doi.org/10.1007/978-981-13-9419-5_12
Ughi, F., & Dewanto, G. A. (2018). Karakteristik Osilometrik dari Simulator Tekanan Darah. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 5(1), 15. https://doi.org/10.26760/elkomika.v5i1.15
DOI: http://dx.doi.org/10.31153/instrumentasi.v47i1.331
Copyright (c) 2023 Instrumentasi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.