Sensus Wijonarko, Tatik Maftukhah, Dadang Rustandi , Bernadus Sirenden , Nur Tjahyo Darmayanti


Rain gauges in Indonesia need recalibration at least twice a year, viz. at the end of dry season where the rain gauges will soon work harder and at the end of rainy season where usually there are many garbage on each rain gauge orifice. Based on the direct surveys in the fields and discussions at some rain gauge calibration laboratories in Indonesian western, central, and eastern parts, the calibration officers in the visited offices generally used manual rain gauge calibrators to recalibrate rain gauges on their fields. Therefore, the dependency of calibration results to the human beings is very high. Meanwhile to avoid data gathering discontinuation, rain gauges should be recalibrated in situ. To cope with this problem and other issues related to rain gauge calibrators, a research to develop a web based rain gauge calibrator was carried out. The research result using research and development method showed that this calibrator can work well as an in situ and ex situ rain gauge calibrator.


rainfall, rain intensity, rain gauge, simulator, calibrator, web

Full Text:



Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology 355, 148163.

Aksoy, H., Unal, N. E., Cokgor, S., Gediki, A., yoon, J., Koca, K. Inci, S. B., & Eris, B. (2012). A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport process over a two-dmensional flume. Catena, 98, 63-72.

Beamex (2016). Calibration uncertainty for non-mathematicians. https://nfogm.no/wp-content/uploads/2016/03/Calibration-uncertainty-for-non-mathematicians.pdf.

Beamex (2017). Calibration world. https://www.beamex.com/wp-content/uploads/2017/ 06/CalibrationWorld_2017-01-ENG.pdf.

Bege, G., Drnovek, J., Bojkovski, J., Knez, J., Groselj, D., ?erna?, B., & Hudoklin, D. (2015). Automatic weather stations and the quality function deployment method. Meteorol. Appl. 22, 861866 .

Beven, K. (1989). Changing ideas in hydrology - The case of physically-based models. J. Hydrol., 105, 157-172.

Brandt, C. J. S. (1989). The size distribution of throughfall drops under vegetation canopies. Catena, 16, 507-524.

Calder & Kidd (1978). A note on the dynamic calibration of tipping-bucket gauges. Journal of Hydrology, 39, 383-386.

Calder, I. R. (1996a). Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. Journal of Hydrology, 185, 363-378.

Calder, I. R. (1996b). Rainfall interception and drop size - development and calibration of the two-layer stochastic interception model. Tree Physiology 16, 727732.

Corona, R., Wilson, T., DAdderio, L.P., Porc, F., Montalda, N., & Albertson, J. (2013). On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy. Procedia Environmental Sciences, 19, 875 884.

Jackson, I. J. (1975). Relationships between rainfall parameters and inter- ception by tropical forest. Journal of Hydrology, 24, 215-238.

Jackson, B., Reichard, L., & Connell, R. (2018). Real time calibrated radar rainfall data for improved operational water management and WSUD. ISBN: 978-1-925627-03-9. http://watertech.com.au/wp-content/PDF/Papers/WSUD2018-BRJ-_Real-time_calibrated _rainfall_data.pdf.

Jomaa, S., Barry, D.A., Brovelli, A., Heng, B.C.P., Sander, G.C., Parlange, J. Y., Rose C. W. (2013). Rain splash soil erosion estimation in the presence of rock fragments. Catena, 38-48.

Hall, R. L. (1992). An improved numerical implementation of Calder's stochastic model of rainfall interception - a note. Journal of Hydrology, 140, 389-392.

Hall, R. L. (2003). Interception loss as a function of rainfall and forest types: stochastic modelling for tropical canopies revisited. Journal of Hydrology, 280, 112

Houze Jr., Brodzik, S., Schumacher, C., & Yuter, S. E. (2004). Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. Journal of Applied Meteorology, 43, 1114-1132.

Humphrey, M. D. & Istok, J. D. (1997). A New Method for Automated Dynamic Calibration of Tipping-Bucket Rain Gauges. Journal of Atmospheric and Oceanic Technology, 14, 1513-1519.

Herwitz, S. R. & Slye, R. E. (1995). Three-dimensional modeling of canopy tree interception of wind-driven rainfall. Journal of Hydrology, 168, 205-226.

KNMI (2000). Handbook for the metrological observation. Koninklijk Nederlands Meteorologisch Instituut. 112 p.

Lanza, L. G. & Stagi, L. (2002). Quality standards for rain intensity measurements. WMO Techn. Conf. On Meteorological and Environmental Instruments and Methods of Observation (TECO-2002). https://www.academia.edu/22136831/Quality_Standards_ for_Rain_Intensity_Measurements. Accessed: January 31, 2018.

Lanza, L. G. (2005). Results of the WMO laboratory intercomparison of rainfall intensity gauges. https://www.researchgate.net/publication/255630154_RESULTS_OF_THE_ WMO_LABORATORY_INTERCOMPARISON_OF_RAINFALL_INTENSITY_GAUGES. Accessed: May 6, 2019.

Lanza, L., Leroy, M., Alexandropoulos, C., Stagi, L., & Wauben, W. (2007). WMO laboratory intercomparison of rainfall intensity gauges. https://www.wmo.int/pages/prog/www/ IMOP/reports/2003-2007/RI-IC_Final_Report.pdf. Accessed: January 31, 2018.

Lanza, L. G. & Stagi, L. (2008). Certi?ed accuracy of rainfall data as a standard requirement in scienti?c investigations. Adv. Geosci., 16, 4348.

Lanza, L. G. & Stagi, L. (2009). High resolution performance of catching type rain gauges from the laboratory phase of the WMO field intercomparison of rain intensity gauges. Atmospheric Research, 94, 555563.

Lanza, L. G., Vuerich, E. & Gnecco, L. (2010). Analysis of highly accurate rain intensity measurements from a ?eld test site. Adv. Geosci., 25, 3744.

Lanza, Stagnaro, & Cauteruccio, (2018). Accuracy of precipitation measurements, instrument calibration and techniques for data correction and interpretation. https://www.jma.go.jp/ jma/en/Activities/qmws_2018/Presentation/3.2/Accuracy%20of%20precipitation%20measurements.pdf. Accessed: May 6, 2019.

Lelivre, C. (2014). Correction of tipping-bucket data. file:///C:/Users/Asus/Downloads/ Tipping_Bucket_ Rain_Gauges_-_Claude_Lelievre.pdf. Accessed May 6, 2019.

Luczak, M. J. (2002). Calibration of Remote Sensing Measurements from Surface Observations. http://www.maths-in-industry.org/miis/513/1/Calibration-remote-sensing-measurements-from-surface-observations.pdf. Accessed May 6, 2019.

Luo, H., Zhao, T., Dong, M., Gao, J., Peng, X., Guo, Y., Wang, Z., & Liang, C. (2013). Field studies on the effects of three geotextiles on runoff and erosion road slope in Beijing, China. Catena, 109, 150-156.

Maftukhah. T., Wijonarko, S., & Rustandi, D. (2016). Comparison and Correlation Among Measurement Results of Observatory. Hellman. And Tipping Bucket Sensors. J. Instrumentasi, 40 (1), 7-14.

Molini A., Cassini G., Lanza L.G. & Stagi, L. (2005). Dealing with uncertainty in rainfall gauges calibration: the QM-RIM metrological validation. https://www.wmo.int/pages/ prog/www/IMOP/intercomparisons/RI-Sept2004/Uncertainty_DIAM.pdf. Accessed: March 4, 2019.

Muoz, E., Tume, P., & Ortz, G. (2014). Uncertainty in rainfall input data in a conceptual water balance model: effects on outputs and implications for predictability. Eart Sci. Res. J., 18 (1), 6975.

Muoz, P., Clleri, R., & Feyen, J. (2016). Effect of the Resolution of Tipping-Bucket Rain Gauge and Calculation Method on Rainfall Intensities in an Andean Mountain Gradient. Water, 8, 534436. DOI:10.3390/w8110534.

Parsakhoo, A., Lotfalian, M., Kavian, A., Hoseini, S. A., & Demir, M. (2012). Calibration of a portable single nozzle rainfall simulator for soil erodibility study in hyrcanian forests. African Journal of Agricultural Research , 7(27), 3957-3963.

Plummer, N., Allsopp, T., & Lopez, J. A. (2003). Guidelines on Climate Observation Networks and Systems. WMO/TD No. 1185.

Prakosa, J. A., Wijonarko, S., & Rustandi, D. (2018). The performance measurement test on rain gauge of tipping bucket due to controlling of the water flow rate. Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE Conference of Russian, 1136-1140. DOI: 10.1109/ EIConRus.2018.8317291.

Putuhena, W. M. & Cordery, I. (1996). Estimation of interception capacity of the forest floor. Journal of Hydrology, 180, 283-299.

Pypker, T., Bond, B. J., Link, T. E., Marks, D., & Unsworth, M. H. (2005). The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Metrology, 130, 113-129.

Santana, M. A. A., Guimares, P L O & Lanza, L. G. (2018). Development of procedures for calibration of meteorological sensors. Case study: calibration of a tipping-bucket rain gauge and data-logger set. IOP Conf. Series: Journal of Physics: Conf. Series 975 (2018) 012006; doi :10.1088/1742-6596/975/1/012006.

Sardjono, H. & Wijonarko, S. (2018). Calibration process quantity reduction of the thermal voltage converter standard using a three-stage build-up and build-down method. International Journal of Technology, 9 (1), 181-191.

Sebastianelli, S., Russo, F., Napolitano, F., & Baldini, L. (2013). On precipitation measurements collected by a weather radar and a rain gauge network. Nat. Hazards Earth Syst. Sci., 13, 605623.

Shedekar, V. S., King, K. W., Brown, L. C., Fausey, N. R., Heckel, M., & Harmel, R. D. (2009). Measurement Errors in Tipping Bucket Rain Gauges under Different Rainfall Intensities and their implication to Hydrologic Models. 2009 ASABE Annual International Meeting. https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=40802&content=PDF. Accessed: May 6, 2019.

Vasvri, V. (2005). Calibration of tipping bucket rain gauges in the Graz urban research area. Atmospheric Research, 77, 18-28.

Wildhaber, Y.S., Bnninger, D., Burri, K., & Alewell, Ch. (2012). Evaluation and application of a portable rainfall simulator on subalpine grassland. Catena, 91, 5662.

Wang, J., Fisher, B. D., & Wolff, D. B. (2007). Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements. Nasa Technical Report Server, 1-47. https://ntrs.nasa.gov/search. jsp?R=20070016690.

Wijonarko, S. & Maftukhah, T. (2014). Instrumentation Development for Rainfall Interseption Measurement on a Tree using Water Balance. Jurnal Instrumentasi, 38(2), 1-9.

Wijonarko, S. & Maftukhah, T. (2016). Instrumentation system for water balance measurements on Serkuk Subbasin, Kubu Watershed, Belitung. AIP Conference Proceedings 1746, 020005; doi: 10.1063/1.4953930.

Wijonarko, et al. (2017). Sistem otomatis untuk mengkalibrasi pengukur curah hujan tipe cawan berjungkit (tipping bucket). Patent P00201707655.

Wijonarko, S. (2017). The main purpose for the application of double layer tipping bucket sensors. J. Instrumentasi, 41 (2), 81-89.

Wijonarko, S. (2018). An application example for a method to obtain rainrose information using 48 rainrose instrument sensors. J. Instrumentasi, to be published.

WMO (2008). WMO-No. 8, Guide to meteorological instruments and methods of observation. Geneva, WMO.

WMO (2012). WMO-No. 8, Guide to meteorological instruments and methods of observation. Geneva, WMO.

Zeng, Q., Chen, H., Xu, C. Y., Jie, M. X., Chen, J., Guo, S. L, & Liu, J. (2018). The e?ect of rain gauge density and distribution on runo? simulation using a lumped hydrological modelling approach. Journal of Hydrology 563, 106122. https://doi.org/10.1016/j. jhydrol.2018.05.058.

DOI: http://dx.doi.org/10.31153/instrumentasi.v43i1.176

Copyright (c) 2019 Instrumentasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright &copy 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.