THE BIAS OF WEB BASED RAIN GAUGE CALIBRATOR DUE TO BUBBLES

Sensus Wijonarko, Dadang Rustandi, Tatik Maftukhah, Mahmudi Mahmudi, Bernadus H Sirenden, Jalu Ahmad Prakosa, Purwowibowo Purwowibowo

Abstract


This study was devoted to investigate the bias due to entrapped air - in the cylindrical tube water - to a web based rain gauge calibrator (WBRGC). This study was carried out in laboratory temperature around 25 °C using experiment method, especially by comparing the massof the water with and without bubbles. The entrapped airusedthe space for1.57 gof 1009 g ofwater if there were no bubbles, so this condition madebiasaround - 0.16 %.This bias was very significant in contributing the uncertainty of WBRGC, where in this case was 3 ml for 966 ml of water (0.31 %). Hence, this bias should be promptly overcome.

Keywords


web based rain gauge calibrator, bias, mass, bubbles, water.

Full Text:

PDF

References


Bennett, K. & Zion, H. (2005). Metrology Concepts: Understanding Test Uncertainty Ratio (TUR). TRANSCAT Calibration & Repair Services.

Calder, I.& Kidd, C.(1978).A Note on the Dynamic Calibration of Tipping-Bucket Gauges. Journal of Hydrology, 39: 383—386.

Chandrasekar, I., Baldini, L., Bharadwa, N. & Smith, P. I. (2016). Calibration Procedures for Global Precipitation-Measurement Ground-Validation Radars. The Radio Science Bulletin, 355(2015): 45-73.

Costello, T. A. & Williams Jr., H. J. (1991). Short Duration Rainfall Intensity Measured using Calibrated Time-Of-Tip Data from A Tipping Bucket Raingauge. Agricultural and Forest Meteorology, 57: 147-155.

Davidson, J. F. &Schüler, B. O, G. (1960). Bubble Formation at an Orifice in a Viscous Liquid. TRANS. INSTN CHEM. ENGRS, 38: S105-S115.

Detsch, R. & Harris, I. (2002). Dissolution and Rise Velocity of Small Air Bubbles in Water and Salt Water. IEEE Xplore. DOI: 10 1109/OCEANS 1989 592885.

Humphrey,M. D., Istok, J. D., Lee, J. Y., Hevesi, J.A., &Flint, A. L. (1997). A New Method for Automated Dynamic Calibration of Tipping-Bucket Rain Gauges. Journal of Atmospheric and Oceanic Technology, 14: 1513-1519.

Hung, Y. L., Wang, M. J., Huang, J. W., Lin, S. Y. (2013). A Study on the Impact Velocity and Drop Size for the Occurrence of Entrapped Air Bubbles-Water on Parafilm. Experimental Thermal and Fluid Science, 48: 102-109.

Ismail, I., Shafquet, A., &Karsiti, M. N. (2011). Application of Electrical Capacitance Tomography and Differential Pressure Measurement in an Air-Water Bubble Column for Online Analysis of Void Fraction. IEEE, 6.

Jamaludin, J., Rahim,R. A., & Rahim, H. A. (2016). Charge Coupled Device Based on Optical Tomography System in Detecting Air bubbles in Crystal Clear Water. Flow Measurement and Instrumentation 50:13–2

Leja, J. (1982). Surface Chemistry of Froth Flotation. DOl 10.1007/978-1-4615-7975-5.

Legendre, D. &Zevenhoven, R. (2017). Detailed Experimental Study on the Dissolution of CO2 and Air Bubbles Rising in Water. Chemical Engineering Science, 152: 552-450.

Liu, L., Yan, H., Zhao, G., & Zhuang, J. (2016). Experimental Studies on the Terminal Velocity of Air Bubbles in Water and Glycerol Aqueous Solution, Experimental Thermal and Fluid Science. Doi: http:// dx.doi.org/10.1016/j.expthermflusci.2016.06.011.

Khanam, S. A. & Morse, E.(2003). Test Uncertainty & Test Uncertainty Ratio (TUR).

Khanam, S. (2009). Test Uncertainty Ratio (TUR) and Test Uncertainty. Dissertation.

Liebermann, L. (1957). Air Bubbles in Water. Journal of Applied Physics, 28 (2): 205-211.

Macii, D. & Petri, D. (2003). Management of Measurement Uncertainty for Effective Statistical Process Control. IEEE Transactions on Instrumentation and Measurement, 52(5): 1611-1617.

Macii, D. & Petri, D. (2009). Guidelines to Manage Measurement Uncertainty in Conformance Testing Procedures. IEEE Transactions on Instrumentation and Measurement, 52(5): 33-40.

Maftukhah, T., Wijonarko, S. (2019). A Data Processing Program for Web Based Rain Gauge Calibrators. JurnalInstrumentasi, 43(1), 53-64.

DOI: http://dx.doi.org/10.31153/ instrumentasi.v43i1.178

Marsalek, J. (1981). Calibration of the Tipping-Bucket Rain Gauge. Journal of Hydrology, 53: 343-354.

Pereiro, I., Khartchenko, A. F., Petrini, L., &Kaigal, G. V. (2019). Nip the Bubble in the Bud: a Guide to Avoid Gas Nucleation in Microfluidics. The Royal Society of Chemistry, 2296–2314. Lab Chip, 2019, 19, 2296.

Quan, X., Chen, G., Cheng, P. (2010). Periodic Generation and Transport of Micro Air Bubble in Co-Flowing Water in Microchannels. International Communication in Heat and Mass Transfer, 37: 992-997.

Shafquet, A., Ismail, I., &Karsiti, M. N. (2010). Study of Bubble Flow in an Air-Water Two-Phase Flow by Using Electrical Capacitance Tomography. The 3rd International Conference on Intelligent & Advanced Systems (ICIAS 2010).

Shafquet, A. & Ismail, I. (2012). Measurement of Void Fraction by Using Electrical Capacitance Sensor and Differential Pressure in Air-Water Bubble Flow. The 4th International Conference on Intelligent and Advanced Systems (ICIAS2012): 576-581.

Shedekar, V. S., King, K. W., Fausey, N. R., Soboyejo, A. B. O., Harmel, R. D., Brown, L. C. (2016). Assessment of Measurement Errors and Dynamic Calibration Methods for Three Different Tipping Bucket Rain Gauges. Atmospheric Research, 178-179: 445-458.

Suna, B., Pana, S., Zhanga, J., Zhaoa, X., Zhaoc, Y., &Wanga, Z. (2019). A Dynamic Model for Predicting The Geometry Of Bubble Entrapped In Yield Stress fluid. Chemical Engineering Journal xxx (xxxx) xxxx. https://doi.org/10.1016/j.cej. 2019.123569.

Van Heesch, E. J. M., Lemmens, R. H. P., Franken, B., Ptasinski, K. J., &Geurts, F. L. S. (1994). Pulsed Corona for Breaking up Air Bubbles in Water. IEEE Transactions on Dielectrics and Electrical Insulation, 1(3): 426-431.

Vasva´ri, V. (2005). Calibration of Tipping Bucket Rain Gauges in the Graz Urban Research Area. Atmospheric Research 77: 18 – 28.

Wei, P. S., Tsai, C. E., Tseng, T. W., Chen, L. J., Wang, S. B., Lo, W. S., Liao, K. C. (2019). Solute Convection Effects on a Bubble Entrapped as a Pore During Unidirectional Upward Solidification. International Journal of Heat and Mass Transfer 135: 62–71. https://doi.org/10.1016/j.ijheat masstransfer.2019.01.060.

Wijonarko. S. &Maftukhah. T. (2014). Instrumentation Development for Rainfall InterseptionMeasurement on a Tree using Water Balance. JurnalInstrumentasi. 38(2). 1-9;

DOI: http://dx.doi.org/10.14203/ instru-mentasi.v38i2.59.

Wijonarko. S. &Maftukhah. T. (2016). Instrumentation system for water balance measurements on Serkuksubbasin. Kubu watershed. Belitung. AIP Conference Proceedings 1746. 020005 (2016); DOI: 10.1063/1.4953930.

Wijonarko, S., Maftukhah, T., Rustandi, D., Sirinden, B. H., Prakosa, J. A., Sediono, W., Darna, Y., Sukanda, R., Pinandito, M.(2017). Sistem Otomatis untuk Mengkalibrasi Pengukur Curah Hujan Tipe Cawan Berjungkit (Tipping Bucket). Indonesian Patent No. P00201707655.

Wijonarko, S., Maftukhah, T., Rustandi, D., Tjahyo, E. D. N., Permana, D., Santosa, B. (2016). A Method to Compare Two Hyetometer Calibrators. PPI KIM, 354-364.

Wijonarko, S., Maftukhah, T., Rustandi, D., Sirenden, B. H., Tjahyo, E. D. N. (2019). Web Based Rain Gauge Calibrator. JurnalInstrumentasi, 43(1), 25-42;

DOI: http://dx.doi.org/10.31153/instrumen- tasi.v43i1.176.

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., Hanson, C. L. (1998). Accuracy of NWS 80 Standard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison. Journal of Atmospheric and Oceanic Technology, 15: 54-68.

Zhang, W. & Tan, R. B. H. (2000). A Model for Bubble Formation and Weeping at a Submerged Orifice. Chemical Engineering Science 55: 6243-6250




DOI: http://dx.doi.org/10.31153/instrumentasi.v44i1.215

Copyright (c) 2020 Instrumentasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright &copy 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.