KARAKTERISASI BLACKBODY CAVITY DARI TEMBAGA UNTUK SISTEM KALIBRASI TERMOMETER TELINGA

Iip Ahmad Rifai, Aditya Achmadi, Dwi Larassati, Rahman Sholeh, Melati Azizka Fajria, Arfan Sindhu Tistomo, Suherlan Suherlan, Muhammad Azzumar, Hidayat Wiriadinata, Ghufron Zaid

Abstract


Di Indonesia, penggunaan termometer telinga sebagai alat ukur suhu tubuh sudah sangat umum di masyarakat menggantikan alat ukur suhu lain terutama termometer merkuri. Hal ini membuat pengembangan sistem kalibrasi termometer telinga dengan keakuratan tinggi merupakan suatu keharusan. Telah dibuat sistem kalibrasi termometer telinga dengan benda hitam sebagai media kalibrasi dan bak air dengan pengaduksebagai sumber panas. Pada tulisan ini, dibahas karakterisasi blackbody cavity dari tembaga untuk sistem kalibrasi termometer telinga dengan melakukan pengukuran keseragaman suhu dan pengukuran kestabilan suhu di dinding bagian dalam blackbody cavity. Dengan nilai pengukuran keseragaman suhu tersebut akan dihitung nilai emisivitas gabungan blackbody cavity tembaga untuk kalibrasi termometer telinga. Hasil pengukuran keseragaman blackbody memiliki nilai keseragaman terbesar 4,6 ºC dan nilai stabilitas 0,004 ºC pada suhu 35,5 ºC - 41,5 ºC. Hasil perhitungan menunjukkan bahwa emisivitas gabungan pada dasar coneblackbody cavity hingga 0,989 pada saat isotermal dan 0,978 pada saat non-isotermal. Nilai emisivitas ini cukup mendekati nilai Planckian Radiator ideal yang bernilai 1.


Keywords


termometer telinga, blackbody cavity, emisivitas gabungan

Full Text:

PDF

References


ASTM E1965-98. (2016). Standard Specification for Infrared Thermometers for Intermittent Determination of Patient Temperature. West Conshohocken: ASTM International.

Azizah, K. N. (2019, July 30). Detikhealth. Retrieved February 12, 2020, from detik.com: https://health.detik.com/berita-detikhealth/d-4645179/termometer-merkuri-bakal-dilarang-rs-yang-masih-pakai-bisa-turun-akreditasi

Boles, S., Pušnik, I., Lochlainn, D. M., Fleming, D., Naydenova, I., & Martin, S. (2017). Development and Characterisation of a Bath-Based Vertical Blackbody Cavity Calibration Source for Range -30 °C to 150 °C. Elsevier, 121-127.

Durmuş, H. O., Karaböce, B., Cetin, E., & özdingiş, M. (2018). Calibration System Established at TUBITAK UME for Infrared Ear Thermometers (IRETs). Medical Technologies National Congress (TIPTEKNO), (pp. 1-4). Cyprus.

Fletcher, T., Whittam, A., Simpson, R., & Machin, G. (2018). Comparison of Non-Contact Infrared Skin Thermometer. Journal of Medical Engineering & Technology, 65-71.

Ishii, J., Fukuzaki, T., Kojima, T., & Ono, A. (2001). Calibration of Infrared Thermometers. TEMPMEKO, (pp. 729-734). Berlin.

Ishii, J., Fukuzaki, T., McEvoy, H. C., Simpson, R., Machin, G., Hartmann, J., et al. (2004). A Comparison of The Blackbody Cavities for Infrared Thermometers of NMIJ, NPL , and PTB. TEMPMEKO (pp. 1093-1098). Zagreb: LPM.

JIS T 4207:2005. (2005). Infrared Ear Thermometer. Japanese Standard Asociation.

Keawprasert, T., Yamada, Y., & Ishii, J. (2015). Pilot Comparison of Radiance Temperature Scale Realization NIMT and NMIJ. International Journal Thermophys, 315-326.

Kim, G. J., Yoo, Y. S., Kim, B. H., Lim, S. D., & Song, J. H. (2014). A small-size transfer blackbody cavity for calibration of infrared ear thermometers. Physiological Measurement, 753-762.

Manoi, A., Norranim, U., Kaneko, Y., & Ishii, J. (2014). Bilateral Comparison of Blackbodies for Clinical Infrared Ear Thermometers between NIMT and NMIJ. International Journal of Thermophysics, 485-492.

Nicholas, J. V., & White, D. R. (2001). Traceable Temperature. In J. V. Nicholas, & D. R. White, Traceable Temperature. Amsterdam: Academic Press.

Pušnik, I., Clausen, S., Favreau, J. O., Gutschwager, B., Do˘gan, A. K., Diril, A., et al. (2011). Comparison of Blackbodies for Calibration of Infrared Ear Thermometers. International Journal Thermophys, 128-138.

Sakuma, F., & Kobayashi, M. (1997). Interpolation Equation of Scales of Radiation Thermometers. TEMPMEKO : Sixth Internationa Symposium on Temperatire and Thermal Measurements in Industry and Science, (pp. 305-310). Torino.

Sakuma, F., & Ma, L. (2004). Cavity Emissivity of a Fixed-Point Blackbody. SICE 2003 Annual Conference (pp. 2187-2190). Fukui: IEEE.

Saunders, P. (2001). Reflection Errors for Low-Temperature Radiation Themometers. TEMPMEKO, (pp. 149-154). Berlin.

Saunders, P. (2007). Radiation Thermometry: Fundamentals and Applications in Petrochemical Industry. Bellingham: SPIE.

Saunders, P. (2016). MSL Technical Guide 35 : Emissivity of Blackbody Cavities. MSL New Zealand.

ToolBox, E. (n.d.). Resources, Tools and Basic Information for Engineering and Design of Technical Applications. Retrieved February 2020, from The Engineering ToolBox: https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html

Yoon, H., Gibson, C., & Johnson, B. (2001). On The Determination of Emissivity of The Variable Temperature Blackbody Used in The Disseniation of The US National Scale of Radiance Temperature. TEMPMEKO, (p. 221). Berlin.

Zhang, Z., Tsai, B., & Machin , G. (2009). Radiametric Temperature Measurement 1st Edition. Cambridge: Academic Press.




DOI: http://dx.doi.org/10.31153/instrumentasi.v44i1.199

Copyright (c) 2020 Instrumentasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright &copy 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.