Characterization of 1D Grating Standard for National Laboratory Comparison Using Scanning Electron Microscope

Asep Ridwan Nugraha, Ardi Rahman, Beni Adi Trisna


Nanometrology, which is dimensional metrology on the nanometer scale, is rapidly gaining importance. In Nanometrology, length standard traceable measurements are required to certify the values obtained from measurements. Standard Reference Material (SRM) is a sample for calibrating the magnification scale of a Scanning Electron Microscope (SEM). The standard are produced by recording a precision, laser-generated, interference pattern using photosensitive materials and other processing steps. This fabrication technique provides an accurate measure of the period of the line-space. Some of the critical quality attributes of a pitch standard are (1) the fundamental pitch distance, (2) the uniformity of the pitch, (3) the quality of the line edge roughness, (4) the imaging contrast that it produces, (5) the accuracy of the certified pitch value, and (6) the traceability of the certified pitch value to an internationally recognized standard. In this paper, we describe characterization of 1D grating standard with nominal 700 nm and 300 nm using SEM and its measurement uncertainty. The measurements were performed at 10 differents measurement position at each nominal. Total number of pitch at all measurement position in each nominal was 180. An image was taken at each measurement position. The average pitch of them represents the pitch value of the specimens. The results shows measured pitch for nominal 700 nm is 700.3 nm and 300 nm is 293.6 nm with measurement uncertainty for nominal 700 nm is 5.5 nm nominal 300 nm is 4.4 nm.


calibration; characterization; nanometrology; pitch measurement; SEM; uncertainty; 1D grating

Full Text:



N. P. Database, “United States and China; Top Producers of Carbon Nanotubes in the World,” 2017. [Online]. Available:

J. Schneir, T. H. McWaid, J. Alexander, and B. P. Wilfley, “Design of an atomic force microscope with interferometric position control,” J. Vac. Sci. Technol. B, vol. 12, no. 6, 1994.

F. Meli and R. Thalmann, “Long-range AFM profiler used for accurate pitch measurements,” Meas. Sci. Technol., vol. 9, no. 7, p. 1087, 1998.

M. Bienias, S. Gao, K. Hasche, R. Seemann, and K. Thiele, “A metrological scanning force microscope used for coating thickness and other topographical measurements,” Appl. Phys. A, vol. 66, no. 1, pp. S837--S842, 1998.

R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, and A. Yacoot, “Advances in traceable nanometrology at the National Physical Laboratory,” Nanotechnology, vol. 12, pp. R1–R6, 2001.

S. Gonda, T. Doi, T. Kurosawa, Y. Tanimura, N. Hisata, T. Yamagishi, H. Fujimoto, and H. Yukawa, “Real-time, interferometrically measuring atomic force microscope for direct calibration of standards,” Rev. Sci. Instrum., vol. 70, no. 8, 1999.

S. Gonda, T. Doi, T. Kurosawa, Y. Tanimura, N. Hisata, T. Yamagishi, H. Fujimoto, and H. Yukawa, “Accurate topographic images using a measuring atomic force microscope,” Appl. Surf. Sci., vol. 144–145, pp. 505–509, 1999.

I. Misumi, S. Gonda, O. Sato, K. Sugawara, K. Yoshizaki, T. Kurosawa, and T. Takatsuji, “Nanometric lateral scale development using an atomic force microscope with directly traceable laser interferometers,” Meas. Sci. Technol., vol. 17, no. 7, p. 2041, 2006.

I. Misumi, S. Gonda, O. Sato, M. Yasutake, R. Kokawa, T. Fujii, N. Kojima, S. Kitamura, R. Tamochi, J. Kitta, and T. Kurosawa, “Round-robin measurements of 100- and 60-nm scales among a deep-ultraviolet laser diffractometer, a scanning electron microscope and various atomic force microscopes,” Meas. Sci. Technol., vol. 18, no. 3, p. 803, 2007.

I. Misumi, S. Gonda, O. Sato, K. Sugawara, K. Yoshizaki, T. Takatsuji, Y. Azuma, T. Fujimoto, and T. Kurosawa, “Application of a GaAs/InGaP superlattice in nanometric lateral scales,” Meas. Sci. Technol., vol. 18, no. 9, p. 2743, 2007.

I. Misumi, M. Lu, H. Tanaka, K. Sugawara, S. Gonda, and T. Kurosawa, “Nanometric lateral scale development with Si/SiO 2 multilayer thin-film structures and improvement of uncertainty evaluation using analysis of variance,” Meas. Sci. Technol., vol. 19, no. 4, p. 45101, 2008.

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol, vol. 16, pp. 1241–1249, 2005.

I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol, vol. 14, pp. 463–471, 2003.

I. Misumi, S. Gonda, T. Kurosawa, and Y. Azuma, “Reliability of parameters of associated base straight line in step height samples : Uncertainty evaluation in step height measurements using nanometrological AFM,” Precis. Eng., vol. 30, pp. 13–22, 2006.

BIPM, CMS-ITRI, and NMIJ, “Key and supplementary comparisons - Information of APMP.L-S5,” 2017. [Online]. Available:

L. Koenders, R. Bergmans, J. Garnaes, J. Haycocks, N. Korolev, T. Kurosawa, F. Meli, B. C. Park, G. S. Peng, G. B. Picotto, E. Prieto, S. Gao, B. Smereczynska, T. Vorburger, and G. Wilkening, “Comparison on Nanometrology: Nano 2—Step height,” Metrologia, vol. 40, no. 1A, p. 4001, 2003.

H. Bosse and G. Wilkening, “Developments at PTB in nanometrology for support of the semiconductor industry,” Meas. Sci. Technol., vol. 16, no. 11, pp. 2155–2166, 2005.

J. Garnaes and K. Dirscherl, “NANO5—2D Grating—Final report,” Metrologia, vol. 45, no. 1A, p. 4003, 2008.

I. Misumi, G. Dai, and G.-S. Peng, “Final report on Supplementary Comparison APMP.L-S2: Bilateral comparison on pitch measurements of nanometric lateral scales (50 nm and 100 nm) between NMIJ/AIST (Japan) and PTB (Germany),” Metrologia, vol. 44, no. 1A, p. 4006, 2007.

L. Koenders, P. Klapetek, F. Meli, and G. B. Picotto, “Comparison on step height measurements in the nano and micrometre range by scanning force microscopes,” Metrologia, vol. 43, no. 1A, p. 4001, 2006.

H. U. Danzebrink, L. Koenders, G. B. Picotto, A. Lassila, S. H. Wang, and P. Klapetek, “Final report on EUROMET.L-S15.a (EUROMET Project 925): Intercomparison on step height standards and 1D gratings,” Metrologia, vol. 47, no. 1A, p. 4006, 2010.

J. E. Decker, E. Buhr, A. Diener, B. Eves, A. Kueng, F. Meli, J. R. Pekelsky, S.-P. Pan, and B.-C. Yao, “Report on an international comparison of one-dimensional (1D) grating pitch,” Metrologia, vol. 46, no. 1A, p. 4001, 2009.

I. Misumi, S. Gonda, T. Kurosawa, Y. Tanimura, N. Ochiai, J. Kitta, F. Kubota, M. Yamada, Y. Fujiwara, Y. Nakayama, and K. Takamasu, “Submicrometre-pitch intercomparison between optical diffraction , scanning electron microscope and atomic force microscope,” Meas. Sci. Technol, vol. 14, pp. 2065–2074, 2003.

JCGM (Joint Committee for Guides in Metrology), “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” no. September. 2008.

EMS, “Magnification Reference Standards - SPM, AFM, SEM Calibration Standards,” 2017. [Online]. Available: [Accessed: 14-Mar-2017].

X. Jiang, R. Wang, T. Yu, J. Chen, and R. Huang, “Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS Technology: Part I-Modeling and Simulation Method,” IEEE Trans. Electron Devices, vol. 60, no. 11, pp. 3669–3675, 2013.

B. D. Bunday, M. Bishop, D. W. McCormack, J. S. Villarrubia, A. E. Vladár, R. Dixson, T. V Vorburger, and N. G. Orji, “Determination of optimal parameters for CD-SEM measurement of line-edge roughness,” in Metrology, Inspection, and Process Control for Microlithography XVIII, 2004, pp. 515–533.

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100-nm-pitch standard characterization for metrology applications,” Proc. SPIE, vol. 4689. pp. 558–564, 2002.

C. Shin, “Variation-Aware Advanced CMOS Devices and SRAM,” in Springer Series in Advanced Microelectronics 56, VII., Springer, Ed. Seoul: Springer Nature, 2016, pp. 19–35.

J. R. Bickford, “Image J Documentation Wiki : Analyze stripes,” Image J, 2013. [Online]. Available: [Accessed: 08-Jun-2017].


Copyright (c) 2019 Instrumentasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright &copy 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.