Sensus Wijonarko


The purpose of this study was to show an application for a technique to gain rainfall information utilizing 48 sensors of a rainrose instrument. An analytic descriptive was employed as the study method. Even though the way to get the output was relatively complex, the result was not easy to be achieved using the available raingauges on the market.


rainfall, wind direction, sensor, instrument, rainrose, implementation

Full Text:



Brodowski, R., 2013. Soil detachment caused by divided rain power from raindrop parts splashed downward on a sloping surface. Catena, Volume 105, pp. 52–61.

Cerdà, A., Ibáñez, S. & Calvo, A., 1997. Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, Volume ll, pp. 163-170.

Coutinho, M. A. & Tomás, P. P., 1995. Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center. Catena 25 (1995) 187-197.

Dietz, J., Hölscher, D., Leuschner, C. & Hendrayanto, 2006. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management, Volume 237, pp. 170–178.

Erpula, G, Norton, L.D. & Gabriels, D., 2003. Sediment transport from interrill areas under wind-driven rain. Journal of Hydrology, Volume 276 , pp. 184–197.

Karagiozis, A., Hadjisophocleous, G. & Cao, S. 1997. Wind-driven rain distributions on two buildings. Journal of Wind Engineering and Industrial Aerodynamics, Volume 67-68, pp. 559-572.

Liu, B., Chen, X., Lian, Y. & Wu, L., 2013. Entropy-based assessment and zoning of rainfall distribution. Journal of Hydrology, Volume 490, pp. 32–40.

Matsuda, M. et al. 2010. Omnidirectional Rain Gauge. US Patent 2010/0300198 A1.

Montenegro, A.A., Abrantes, J.R.C., de Lima, J.L.M.P., Singh, V.P. & Santos, T.E.M., 2013. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena, Volume 109, pp. 139–149.

Poppenborg, P. & Hölscher, D., 2009. The influence of emergent trees on rainfall distribution in a cacao agrofor. Flora, Volume 204, pp. 730–736.

Singh, R., Panigrahy, N. & Philip, G., 1999. Modified rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management, Volume 41, pp. 167 -175.

Tang, Q., Xiao, H., Guo, C. & Feng, L., 2014. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmospheric Research, Volume 135–136, pp. 59–75.

Yang, D., Goodison, B.E. & Metcalfe, J.R., 1998. Accuracy of NWS 80 Standard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison. Journal of Atmospheric and Oceanic Technology, Volume 15, pp. 54-68.

Wijonarko, S., Maftukhah, T., Rustandi, D. Damayanti, N.T.E., Permana, D. & Santoso, B., 2016. A method to compare two hyetometer calibrators. PPI KIM, Volume 42, pp. 354-364.

Wijonarko, S., Maftukhah, T., Rustandi, D. (2017). The compartment area calculation for rainrose measurements. Being reviewed.

Wijonarko, S., Maftukhah, T., Santosa, H.H., Rustandi, D., Ngatenan & Sediono, W., 2015. Sistem dan Metode Mengukur curah hujan berdasarkan arah mata angin dan kemiringan. Patent registration number P00201508281.

WMO 2006. WMO-No. 49: Technical Regulations, Volume III Hydrology. P: x.

WMO 2008. WMO-No. 168: Guide to Hydrological Practices, Volume I, Hydrology – From Measurement to Hydrological Information. Geneva, 10 chapter.

WMO 2009. WMO-No. 168: Guide to Hydrological Practices Volume II. Management of Water Resources and Application of Hydrological Practices.

WMO-No. 488, 2007. Guide to the Global Observing System. Geneva, 8 parts.

Rutter, A.J., K.A. Kershaw, P.C. Robins, and A.J. Morton, 1971. A predictive model of rainfall interception in forests, I. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol., 9 (1971/1972): 367-384.

Rutter, A.J., A.J. Morton, and P.C. Robins, 1975. A predictive model of rainfall interception in forests, II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12: 367-380.

Gash, J.H.C. and A.J. Morton, 1978. An application of the Rutter model to the estimation of the interception loss from thetford Forest. Journal of Hydrology, 38 (1978): 49-58.

Gash, J.H.C., C.R. Lloyd, and G. Lachaud, 1995. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170 (1995): 79-86.

Valente, F., J.S. David, and J.H.C. Gash, 1997. Modelling interception loss for two sparse eucalypt and pine forsts in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190: 141-162.

Pearce, A.J, J.H.C. Gash and J.B. Stewart, 1980. Rainfall interception in a forest stand estimated from grassland meteorological data. Journal of Hydrology, 46: 147-163.

van Dijk, A.I.J.M. & Bruijnzeel, L.A., 2001. Modeling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. Journal of Hydrology, Volume 247, pp. 239-262.

Zeng, N., Shuttleworth, J.W. & Gash, J.H.C., 2000. Influence of temporal variability of rainfall on interception loss. Part I. Point analysis. Journal of Hydrology, Volume 228, pp. 228–241.

Calder, I.R., 1977. A model of transpiration and interception loss from a spruce forest in Plynlimon, Central Wales. Journal of Hydrology, 33 (1977): 247 – 265.

Calder, I.R., 1986. A stochastic model of rainfall interception. Journal of Hydrology, 89 (1986): 65-71.

Calder, I.R., 1996. Rainfall interception and drop size-development and calibration of the two-layer stochastic interception model. Tree Physiology, 16: 727-732.

Calder, I.R., 1999. Dependence of rainfall on drop size – a reply to the comment by Uijlenhoet and Stricker. Journal of Hydrology, 217 (1999): 164-165.

Calder, I.R., I.R. Wright, and D. Murdiyarso, 1986. A study of evaporation from tropical rain forest – West Java. Journal of Hydrology, 89 (1986): 13-31.

Calder, I.R., 1996. Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. Journal of Hydrology, 185 (1996): 363-378.

Calder, I.R., R.C. Hall, P.T.W. Rosier, H.G. Bastable, and K.T. Prasanna, 1996. Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species. Journal of Hydrology, 185 (1996): 379-388.

Calder, I.R., R.L. Hall, H.G. Bastable, H.M. Gunston, O. Shela, A. Chirwa, and R. Kafundu, 1995. The impact of land use change on water resources in sub-Saharan Africa: a modeling study of Lake Malawi. Journal of Hydrology, 170 (1995): 123 – 135.

Hall, R.L., 1992. An improved numerical implementation of Calder’s stochastic model of rainfall interception – a note. Journal of Hydrology, 140 (1992): 389-392.

Sugiura, K., S. Takahashi, T. Kameda, H. Enomoto, Y. Kononov, & M. Ananicheva, 2016. Spatial characteristics of rainfall at sparsely distributed station network over the high-latitude mountainous regions in Eastern Siberia. Int J Earth Environ Sci, 1: 104.

WMO 2008. WMO-No. 8, Guide to Meteorological Instruments and Methods of Observation. Pp: 1.6.1.

Shako, O. Climate Measurement: A review of rainfall and temperature measurement standards in Guyana. Georgetown: 32 p.

Koninklijk Nederlands Meteorologisch Instituut (KNMI), 2000. Handbook for the Meteorological Observation. KNMI, 112 p.


Copyright (c) 2019 Instrumentasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright &copy 2015 Jurnal Instrumentasi (p-ISSN: 0125-9202, e-ISSN:2460-1462). All Rights Reserved.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.